Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY We explore the potential of utilizing distributed acoustic sensing (DAS) for back-projection (BP) to image earthquake rupture processes. Synthetic tests indicate that sensor geometry, azimuthal coverage and velocity model are key factors controlling the quality of DAS-based BP images. We show that mitigation strategies and data processing modifications effectively stabilize the BP image in less optimal scenarios, such as asymmetric geometry, narrow azimuthal coverage and poorly constrained velocity structures. We apply our method to the $$M_w7.6$$ 2022 Michoacán earthquake recorded by a DAS array in Mexico City. We also conduct a BP analysis with teleseismic data for a reference. We identify three subevents from the DAS-based BP image, which exhibit a consistent rupture direction with the teleseismic results despite minor differences caused by uncertainties of BP with DAS data. We analyse the sources of the associated uncertainties and propose a transferable analysis scheme to understand the feasibility of BP with known source–receiver geometries preliminarily. Our findings demonstrate that integrating DAS recordings into BP can help with earthquake rupture process imaging for a broad magnitude range at regional distances. It can enhance seismic hazard assessment, especially in regions with limited conventional seismic coverage.more » « less
-
Abstract Distributed Acoustic Sensing (DAS) offers a transformative solution for dense, high‐resolution seismic monitoring to address the challenges of traditional seismometers in urban seismic surveys. Here, we employ seismic interferometry of the ambient noise field and the trace stretching method to monitor seismic velocity variations in Mexico City. We present spatiotemporal variations in relative Rayleigh wave group velocity calculated over two frequency bands (0.4–1.2 Hz and 1.2–3.6 Hz) using DAS data collected over a year. To investigate these variations, we model the impacts resulting from the 2022 Mw7.6 earthquake, along with the effects of precipitation and temperature on the calculated in the 0.4–1.2 Hz frequency band, which is primarily dominated by the fundamental mode of the Rayleigh waves. Our results indicate that the earthquake‐induced velocity drop differs in certain fiber sections, likely due to their non‐linear soil behaviors and co‐seismic stress changes but without relation to the maximum local deformation registered during the earthquake. Additionally, our modeling indicates that the velocity changes are influenced by seasonal temperature variations, and the impact of precipitation is relatively minor, at least for the depth range (50 m) examined in this study. This study highlights the capability of DAS to enhance spatiotemporal monitoring in urban environments, providing valuable insights into both seismic and environmental responses.more » « lessFree, publicly-accessible full text available August 1, 2026
-
SUMMARY The Granada Basin in southeast Spain is an area of moderate seismicity. Yet, it hosts some of the highest seismic hazards in the Iberian Peninsula due to the presence of shallow soft sediments amplifying local ground motion. In urban areas, seismic measurements often suffer from sparse instrumentation. An enticing alternative to conventional seismometers is the distributed acoustic sensing (DAS) technology that can convert fibre-optic telecommunication cables into dense arrays of seismic sensors. In this study, we perform a shallow structure analysis using the ambient seismic field interferometry method. We conduct a DAS array field test in the city of Granada on the 26 and 27 August 2020, using a telecommunication fibre. In addition to the existing limitations of using DAS with unknown fibre-ground coupling conditions, the complex geometry of the fibre and limited data recording duration further challenge the extraction of surface-wave information from the ambient seismic field in such an urban environment. Therefore, we develop a processing scheme that incorporates a frequency–wavenumber (f−k) filter to enhance the quality of the virtual shot gathers and related multimode dispersion images. We are able to use this data set to generate several shear-wave velocity (VS) profiles for different sections of the cable. The shallow VS structure shows a good agreement with different geological conditions of soil deposits. This study demonstrates that DAS could provide insights into soil characterization and seismic microzonation in urban areas. In addition, the results contribute to a better understanding of local site response to ground motion.more » « less
-
SUMMARY Ocean bottom distributed acoustic sensing (OBDAS) is emerging as a new measurement method providing dense, high-fidelity and broad-band seismic observations from fibre-optic cables deployed offshore. In this study, we focus on 35.7 km of a linear telecommunication cable located offshore the Sanriku region, Japan, and apply seismic interferometry to obtain a high-resolution 2-D shear wave velocity (VS) model below the cable. We first show that the processing steps applied to 13 d of continuous data prior to computing cross-correlation functions (CCFs) impact the modal content of surface waves. Continuous data pre-processed with 1-bit normalization allow us to retrieve dispersion images with high Scholte-wave energy between 0.5 and 5 Hz, whereas spatial aliasing dominates dispersion images above 3 Hz for non-1-bit CCFs. Moreover, the number of receiver channels considered to compute dispersion images also greatly affects the resolution of extracted surface-wave modes. To better understand the remarkably rich modal nature of OBDAS data (i.e. up to 30 higher modes in some regions), we simulate Scholte-wave dispersion curves for stepwise linear VS gradient media. For soft marine sediments, simulations confirm that a large number of modes can be generated in gradient media. Based on pre-processing and theoretical considerations, we extract surface wave dispersion curves from 1-bit CCFs spanning over 400 channels (i.e. ∼2 km) along the array and invert them to image the subsurface. The 2-D velocity profile generally exhibits slow shear wave velocities near the ocean floor that gradually increase with depth. Lateral variations are also observed. Flat bathymetry regions, where sediments tend to accumulate, reveal a larger number of Scholte-wave modes and lower shallow velocity layers than regions with steeper bathymetry. We also compare and discuss the velocity model with that from a previous study and finally discuss the combined effect of bathymetry and shallow VS layers on earthquake wavefields. Our results provide new constraints on the shallow submarine structure in the area and further demonstrate the potential of OBDAS for high-resolution offshore geophysical prospecting.more » « less
An official website of the United States government
